Module 2.2.1 Management of the HIV-positive person with respiratory symptoms: TB- diagnostics Edited Dr N. Dlamini-Miti Isango Lethemba TB Research Unit

health Department: Health REPUBLIC OF SOUTH AFRICA

Learning Outcomes

Upon completion of this module,

clinicians will be able to:

- Understand the risk of active TB in PLHIV
- Understand the changes to TB screening/ testing for PLHIV
- Describe the TB-NAAT algorithms
- Describe the uLAM algorithm for patients with AHD

Outline

• Background

TUBERCULOSIS IS THE TOP INFECTIOUS KILLER IN THE WORLD

IN 2018

1.5 MILLION* PEOPLE DIED FROM TB

INCLUDING 251 000 PEOPLE WITH HIV

TB is the leading killer of people with HIV and a major cause of deaths related to antimicrobial resistance

*The 95% uncertainty intervals are 1.4-1.6 million for TB deaths and 223 000 - 281 000 for TB/HIV deaths.

TUBERCULOSIS IS THE LEADING KILLER OF PEOPLE WITH HIV

IN 2018, THERE WERE 251 000 DEATHS FROM TB AMONG PEOPLE WITH HIV*

862 000* PEOPLE WITH HIV FELL ILL WITH TB

ONLY **56%** OF THEM WERE DIAGNOSED WITH BOTH HIV AND TB

End preventable deaths by ensuring early access to TB treatment, life-saving antiretroviral therapy and TB preventive treatment

*The 95% uncertainty intervals are 223 000 – 281 000 for deaths and 776 000 – 952 000 for incidence.

South African epidemiology

	Brazil Central African Republic Congo Ethiopia Gabon Kenya Lesotho Liberia Namibia Thailand Uganda United Republic of Tanzania	China Democratic Republic of the Congo India Indonesia Mozambique Myanmar Nigeria Philippines South Africa Zambia	Angola Bangladesh Democratic People's Republic of Korea Mongolia Pakistan Papua New Guinea Viet Nam	MDR/RR-TB
TB/HIV	Botswana Cameroon Eswatini Guinea Bissau Malawi Russian Federation Zimbabwe	Sierra Leone	Azerbaijan Belarus Kazakhstan Nepal Peru Republic of Moldova Russian Federation Somalia Tajikistan Ukraine Uzbekistan Zimbabwe	
TB				

	Number	(Rate per 100 000 population)			
Total TB incidence	304 000 (207 000-421 000)	513 (348-709)			
HIV-positive TB incidence	163 000 (111 000-225 000)	274 (186-379)			
MDR/RR-TB incidence**	21 000 (13 000-29 000)	35 (21-49)			
HIV-negative TB mortality	23 000 (22 000-24 000)	38 (36-40)			
HIV-positive TB mortality	33 000 (11 000-65 000)	55 (19-109)			
Estimated proportion of TB cases with MDR/RR-TB*, 2021					
New cases		4.1% (3.9-4.2)			
Previously treated cases		28% (27-29)			

- The risk of developing active TB among PLHIV who have CD4+ counts >350 and are virally suppressed is ______when compared to the risk among similar HIV negative individuals?
 - a. Equivalent
 - b. Higher
 - c. Lower

TB in PLHIV

- An estimated 50-60% of HIV positive people infected with TB will go on to develop active disease
- TB can occur at any point in the course of progression of HIV infection
- The risk of TB is increased even in the first year of HIV infection (with CD4+ counts >350)
- ART reduces risk of developing TB, but does NOT totally eliminate it: Risk of TB >4x in those with CD4+>700 vs general population

Gupta A, Wood R, Kaplan R, Bekker LG, Lawn SD. **Tuberculosis** incidence rates during 8 years of follow-up of an antiretroviral treatment cohort in South Africa: comparison with rates in the community. *PLoS One*. 2012;**7**(3):e34156.

TPT crucial in reducing this risk

- 1. TB/HIV coinfected clients have _____mortality risk when compared to HIV negative people with TB (PWTB)?
 - a. Equivalent
 - b. Higher
 - c. Lower
 - d. It depends

TB/HIV co-infection outcomes

• TB/HIV co-infected clients may have increased mortality due to

- rapid TB disease progression
- late diagnosis and treatment
- For those on TB treatment: Co-infected higher mortality than HIV neg- no stratification by ART status
- Other studies e.g. Schippell et al: Risk ratio of mortality in people with RR-TB: similar to HIV neg people if on ART & HIV controlled
- Suboptimal diagnostics contribute to poor outcomes from HIVassociated tuberculosis

- 3. There are TWO fairly static states of TB infection, i.e. Latent TB (no symptoms) and Clinical (Active) TB disease
- a. True
- b. False
- c. Not sure

TB infection states

Sub-clinical TB disease

 Disease due to Mtb that does not cause clinical TB-related symptoms but causes other abnormalities that can be detected by CXR or microbiologic assays.

-Drain et al, Clin Microbiol Reviews, 2018

-Infectious

-Drive transmission

-?Treat for how long

Therefore: Expand TB screening beyond W4SS

- DCXR with CAD
- > TUTT

- 4. Which of the following is TRUE about the TUTT strategy?
 - a. TUTT= Targeted Universal TB Treatment
 - b. The target groups must only be tested for TB when they have TB symptoms
 - c. The target groups must not be screened for TB but must be tested for TB at all their visits.
 - d. The target groups include PLHIV, Close contacts of people with TB, and people previously treated for TB in the last 2 years.

Targeted Universal Testing for TB (TUTT)

Martinson et al. A Cluster Randomized Trial of Systematic Targeted Universal Testing for Tuberculosis in Primary Care Clinics of South Africa (The TUTT Study). Available at SSRN: <u>https://ssrn.com/abstract=4092970</u>

Targeted Universal TB Testing (TUTT) study

RESULTS: YIELD BY RISK FACTOR AND SYMPTOMS

Universal TB testing for patients at high risk for TB using Xpert and culture irrespective of the presence of TB symptoms resulted in a 6% overall yield in laboratory confirmed TB.

TUTT Study Conclusions

- Systematic screening with Xpert & culture found more PWTB in clinics
 - Overall: 6%
 - PLHIV: 5%
- Clinics are diagnosing 8% fewer patients with TB year on-year under the standard of care
- The TUTT intervention resulted in a 17% net increase in finding PWTB per clinic per month as compared to the standard of care clinics.
- Systematic screening with Xpert is recommended in subpopulations at high risk of TB

Health Facility TB Screening Algorithm

Poll 5

- 4. Which of these statements about TUTT in PLHIV is FALSE- according to the TB screening and Testing SOP?
 - a. All newly diagnosed adults and adolescents should have their sputum sent for TB testing with Xpert Ultra irrespective of TB symptoms
 - b. All newly diagnosed PLHIV with a baseline CD4+ count less than 200 should be tested with urine TB LAM irrespective of TB symptoms
 - c. All pregnant women (PWLIV) should be tested for TB at Antenatal Care enrolment
 - d. TUTT should be conducted annually, linked to viral load monitoring visits.

Frequency of testing

- **1. General population**
 - Only when they present with any TB symptom or chest x-ray changes suggestive of TB
- 2. People living with HIV
 - o At the time of HIV diagnosis
 - **o On enrolment in Antenatal care for pregnant women**
 - **o** Annually for PLHIV on treatment linked to VL monitoring follow up visits
 - At re-engagement to care after >/=90 days of missed appointment (Think Tank)
- 3. Household contacts of people diagnosed with TB
 - o After each exposure to a person with a confirmed TB diagnosis
- 4. People previously treated for TB
 - o Annually for a period of two years

Poll 6

- 4. Which of the following statements is true about TB diagnostic testing?
 - a. Direct LPA testing on pleural fluid is recommended to confirm Pleural TB
 - b. Direct LPA testing on sputum is recommended when the Xpert MTB/Rif result is negative
 - c. The Xpert Ultra MTB/Rif test can only be performed on sputum
 - d. The Xpert Ultra MTB/Rif test can be performed on a variety of samples including, sputum, CSF, pleural fluid, and stool

TB TESTING PLATFORMS

0

GENEXPERT (CEPHEID)

COBAS MTB and COBAS MTB RIF/INH (ROCHE)

BD MAX MDR-TB (BECTON DICKINSON)

Available Tests

- LPAs discontinued (Direct LPAs were only validated for sputum & less sensitive than GXP)
- No reference to Xpert as first line test but **TB-NAAT**
- Cobas and BD Max conducted on **sputum only**
- Xpert conducted on sputum, gastric washings/aspirates, lymph node biopsies or fine needle aspirates, tissue biopsies, Fluids (joint, pleural, ascitic, peritoneal, pus collection) and cerebrospinal fluid (CSF) – ? stool, urine
- Results reported as RS, RR, HR, MDR TB
- Major change is Hr-TB diagnosis upfront, requiring appropriate management at point of diagnosis
- Patients with RR/MDR-TB will be referred to treatment initiation unit

Management of patient with respiratory symptoms

Case Study 1

29 year old man

- Diagnosed with HIV three years ago
- ART-naive, CD4: 195 cells/uL

Presents with

- Cough for 5 days
- Fever
- Progressive dyspnoea

What is your differential diagnosis?

• Poll 7

Case 1: What is the differential diagnosis?

- a. Bacterial pneumonia
- b. TB
- c. PCP/PJP
- d. Viral pneumonia
- e. All of the above

What should you do next?

Differential Diagnosis

- Bacterial pneumonia
- Tuberculosis
- PCP/PJP
- Viral (may rank higher in Pandemics)
- Fungal
 - Cryptococcal
 - Dimorphic
- Kaposi Sarcoma
- Non-tuberculous Mycobacterium (NTM)
- Other
 - o Lymphoma
 - Lymphocytic interstitial pneumonia (LIP)
 - Pulmonary hypertension

What is your differential diagnosis?

- Examination:
- RR 32/min, BP 110/70 mmHg
- Temp 38° C
- Bronchial breathing and crackles: right upper zone
- CXR on the right
- Poll 8

Poll 8

- 4. Case CXR: The following statement is TRUE?
 - a. The most likely diagnosis is a Bacterial CAP, so the patient must be started on antibiotics and not be investigated for TB
 - b. This is typical of PCP/PJP
 - c. Bacterial CAP is very likely, but starting the patient on antibiotics, then performing urine LAM testing and taking sputum for Xpert MTB/Rif is the best course of action
 - d. Bacterial CAP is very likely, but starting the patient on antibiotics and taking sputum for Xpert MTB/Rif is the best course of action

Respiratory Symptoms and HIV

• Very common

• Difficulties:

- $_{\odot}$ Not easy to distinguish clinically
- Diagnostics not ideal
- Patients may have more than one problem

Regarding MTB/Rif results in Case 1, which of these is TRUE?

- a. A negative sputum MTB/Rif result, must be followed by a TB culture & DST
- b. A sputum positive MTB/Rif result always indicates active TB, and TB treatment must be promptly initiated.
- c. A sputum 'trace positive' result always indicates past TB, and must be ignored
- d. A sputum negative result always excludes pulmonary TB

44 year old male, newly diagnosed HIV positive at this visit

Presents with 10 day hx of non-productive cough

- Difficulty breathing
- Weight loss > 5%
- RR 30/min
- Temp 38.4°C
- Pulse 124bpm
- BP 100/68 mmHg
- Cannot walk unaided

Poll 10

Which of these is true about LF-LAM testing recommendations in South Africa?

- a. All adult PLHIV with a negative TB screen, and unable to produce sputum, should undergo LAM testing at HIV diagnosis.
- b. Urine TB LAM should NEVER be performed on the day of HIV diagnosis.
- c. A positive LAM test confirms DS-TB
- d. All PLHIV admitted to medical wards and not known to have active TB, need to undergo LAM testing

What to do if sputum not obtainable

1. Induced sputum-

- Nebulisation: Hypertonic/ N-saline with bronchodilator
- Chest physiotherapy
- 2. Chest X-ray

3. +/- Urine LF-LAM (do in inpatients/ CD4+ count < 200/ seriously ill PLHIV)

- Severely sick, regardless of CD4+ count: RR> 30/min; Temp >39; HR>120bpm; BMI<18.5; cannot walk unaided</p>
- ➢ CD4+ <200</p>

Shown to reduce TB deaths: all-cause mortality at 8w by 17%

Peter JG et al- randomized clinical trial of 2,000 hospitalized people with HIV in South Africa, Tanzania, Zambia, and Zimbabwe

Diagnostic challenges in AHD

Diagnosis of TB in people with advanced HIV using sputum-based tests is challenging

- High % extra-pulmonary TB
- paucibacillary pulmonary TB
- Molecular tests less sensitive; long TAT of TB culture
- inability of such patients to expectorate sputum.
- Enter urine LF-LAM

Urine lipoarabinomannan (LAM) assay

- Bedside test using urine
- Detects TB antigen (LAM is component of mycobacterial cell wall)
- Easy to perform (mid-stream urine; inspect after 25 min)
- Sensitivity increases as CD4+ cell count declines – should be used in hospitalized PLHIV (medical condition) or those with CD4+ <200, or seriously ill

Test kits are available in hospital pharmacies and depot

Urine lipoarabinomannan (LAM) assay Limitations

- Performance depends on CD4+ cell count
- Negative test does not rule out active TB – further investigations and empirical TB treatment may be required
- Does not detect drug resistance
- Does not differentiate *M.* tuberculosis from nontuberculous mycobacteria

Expand use of Urine LF-LAM testing for AHD

Thank You

References

- WHO: Global TB Report: 2019
- HIV AND THE RESPIRATORY SYSTEM Man-Po LEE
- Community-acquired bacterial pneumonia in adult HIV-infected patients <u>C1, García-Vidal C2, Moreno A2, Miro JM2, Torres A1</u>
- A POCKET GUIDE TO ANTIBIOTIC PRESCRIBING FOR ADULTS IN SOUTH AFRICA, 2015 SEAN WASSERMAN TOM BOYLES MARC MENDELSON
- Treatment decisions and mortality in HIV-positive presumptive smear-negative TB in the Xpert[™] MTB/RIF era: a cohort study<u>Hermans SM1,2,3, Babirye JA4,</u> <u>Mbabazi O4, Kakooza F4, Colebunders R5,6, Castelnuovo B4, Sekaggya-</u> <u>Wiltshire C4, Parkes-Ratanshi R4,7, Manabe YC4,8,9.</u>
- Pneumocystis jiroveci Pneumonia (PJP) Overview of Pneumocystis jiroveci Pneumonia (Updated: Apr 24, 2019) author heading Author: Shelley A Gilroy, MD, FIDSA; Chief Editor: Pranatharthi Haran Chandrasekar, MBBS, MD
- SA NDOH: National Consolidated Guidelines-FOR THE MANAGEMENT OF HIV IN ADULTS, ADOLESCENTS, CHILDREN AND INFANTS AND PREVENTION OF MOTHER-TO-CHILD TRANSMISSION: Feb 2020
- SA NDOH: Guideline for the Prevention of Mother to Child Transmission of Communicable Infections: Oct 2019

Acknowledgments

The National Department of Health would like to thank the following stakeholders who contributed towards the development of this training manual:

- President's Emergency Plan for AIDS Relief (PEPFAR)
- Centre for the AIDS Programme Research in South Africa (CAPRISA)
- Southern African HIV Clinicians Society (SAHCS)
- National ACC Partners
- Kheth'Impilo
- Right to Care

