## South African National Department of Health Brief Report of Rapid Review Component: Tertiary and Quaternary Level

**TITLE:** Sofosfobuvir/velpatasvir for management of chronic viral hepatitis C **Date:** July 2023

Dute. July 202.

#### **Key findings**

- The direct acting antiviral, sofosbuvir-velpatasvir has been shown to be effective across all genotypes of hepatitis C.<sup>9,10,Error! Bookmark not defined.</sup>
- Sofosbuvir-velpatasvir achieved sustained virological response (SVR12) rates of 94.2% (95% CI 90.7 to 97.7%, P < .001) in 1277 patients.<sup>9</sup>
- Virologic response rates for historic theoretical standard of care (Pegylated interferon and ribavirin) reported to be 54% to 63%<sup>3</sup>
- Sofosbuvir-velpatasvir was demonstrated to be cost-saving as compared to pegylated interferon and ribavirin. Per patient treatment costs were decreased by R77 534, while per patient QALYs increased by 0.50 QALYs over 20 years. The ICER was calculated at –R155 232, with a decreased budget impact of R63 million over 30 years.

The use of pegylated interferon plus ribavirin has not been previously recommended on the essential medicines list, and not routinely used for the management of chronic viral hepatitis C due to a lack of affordability. This was accounted for in a sensitivity analysis of the economic analysis where the proportion of patients eligible for pegylated interferon and ribavirin therapy who actually received treatment ranged from 0% to 100%. The sofosbuvir-velpatasvir ± ribavirin intervention was cost-effective and cost-saving in the large majority of simulations conducted (ICER calculated as –R23 068, and a decreased budget impact of R33 million over 30 years).

## TERTIARY AND QUATERNARY EXPERT REVIEW COMMITTEE RECOMMENDATION:

| Type of | We recommend<br>against the option<br>and for the<br>alternative | We suggest not to<br>use the option or<br>to use the alternative<br>(conditional) | We suggest using<br>either the option or<br>the alternative<br>(conditional) | We suggest<br>using the option<br>(conditional) | We recommend<br>the option<br>(strong) |
|---------|------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------|
|---------|------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------|

Х

It is recommended that sofosbuvir-velpatasvir should be added to the Essential Medicines List and Standard Treatment Guidelines for the management of chronic Hepatitis C infections.

Rationale: Sofosbuvir-velpatasvir achieves a favourable sustained virological response which is greater than historic theoretical standard of care (pegylated interferon and ribavirin) and has been shown to be a cost saving option even if in the context of limited or no pegylated interferon plus ribavirin use.

**Level of Evidence:** I (systematic review and randomised controlled trials) **Review Indicator:** New evidence of efficacy and safety (particularly local evidence), pricing changes (Refer to appendix 1 for the evidence to decision framework)

## BACKGROUND

South Africa has an estimated prevalence of hepatitis C ranging between 0.3-1%, equating to approximately 600 000 patients that require treatment.<sup>1</sup> Complications of hepatitis C infection include chronic hepatitis and the development of cirrhosis, conditions associated with increased morbidity and mortality if left untreated.<sup>2</sup> Traditional treatment options in South Africa include the use of antiviral agents such as ribavirin and pegylated interferon 2a, which result in sustained virological response rates (SVR) of 54 to 63%.<sup>3</sup> By contrast, current global therapeutic strategies have largely incorporated the use of direct-acting hepatitis C antiviral agents (DAAs) since 2014.<sup>2</sup> Sofosbuvir and velpatasvir prevent RNA replication by inhibition of the NS5B and NS5A proteins respectively.<sup>4</sup> This drug combination has also been included in the World Health Organization (WHO) Model List of Essential Medicines.<sup>5</sup> The use of DAA's such as sofosbuvir and velpatasvir have resulted in SVRs over 90-95% for the large majority of patients, including those with advanced stages of liver cirrhosis.<sup>2</sup> These agents appear to have improved safety and ultimately reduce requirements for liver transplantation and mortality.<sup>6</sup> Improvements in quality of life among patients receiving this new class of agents have been demonstrated.<sup>7</sup> Additionally, these agents have similar efficacy regardless of the hepatitis C virus (HCV) genotype, thus eliminating the need for tailored therapy according to genotype and therefore allowing pan-genotypic treatment regimens to be developed.<sup>2</sup>

The National Department of Health Viral Hepatitis Guidelines have recommended inclusion of DAA's for management of patients with viral hepatitis as part of their step-wise role out plan.<sup>8</sup> A previous review was conducted on DAAs (particularly sofosbuvir-daclatasvir) for viral hepatitis (NEMLC June 2017), however no decision could be taken as no DAA's were registered in South Africa at the time. Sofosbuvir and velpatasvir has recently been registered in South Africa, allowing for consideration for inclusion as part of the Essential Medicines List for the Management of viral hepatitis.

Two DAA's have been registered in South Africa, (1) sofosbuvir-velpatasvir and (2) sofosbuvir-ledipasvir. Sofosbuvir-velpatasvir was selected for review as it covers all genotypes, whereas sofosbuvir-ledipasvir only indicated in genotypes 1, 4, 5 and 6.

## **RESEARCH QUESTION:**

Is the treatment with sofosbuvir-velpatasvir safe and effective for the management of chronic hepatitis C virus infection across genotypes.

#### **Eligibility criteria for review**

| PICO:          |                                                                            |
|----------------|----------------------------------------------------------------------------|
| Population     | Treatment of chronic hepatitis C virus infection (all genotypes)           |
| Intervention   | Sofosbuvir-velpatasvir regimen                                             |
| Comparator/s   | Sofosbuvir-velpatasvir regimen plus ribavirin                              |
|                | OR                                                                         |
|                | Placebo                                                                    |
|                | (Historical comparator/standard of care: pegylated interferon + ribavirin) |
| Outcome/s      | <ul> <li>Sustained virological response after 12 weeks (SVR12)</li> </ul>  |
|                | Adverse events                                                             |
| Study design/s | Systematic Reviews and Meta-analysis                                       |
|                | Randomised controlled trials                                               |

#### **METHODS**

A rapid search of evidence was conducted in PubMed and the Cochrane Library on 1 March 2023. The search strategy is outlined in Appendix 2. A search was initialled conduced for systematic review and meta-analyses and thereafter run for randomised controlled trials to ensure no important areas were excluded, and investigate specific comparisons and genotypes. Data extraction was conducted by JR and reviewed by the ERC. An AMSTAR 2 assessment was conducted independently and in duplicate on the selected systematic review (KM and JR).

#### RESULTS

#### **Results of the search**

The search for systematic and meta-analyses produced 19 results and after title and abstract screening, 4 records remained (2 systematic reviews and meta-analysis). After full text review one study (systematic review and meta-analysis) was included. The search for randomised trials identified 1 study in the HIV and HCV co-infected population that was not included in the identified systematic review record but matched our study PICO. No direct comparison on sofosbuvir/velpatasvir and the historic standard of care pegylated interferon and ribavirin found, thus an additional search was conducted to establish the effect size of pegylated interferon and ribavirin for comparative evaluation. Three phase II randomised controlled trials were included, resulting in a total of 2 systematic reviews and 4 trials included (See Appendix 3 – Characteristics of included studies). A summary of the excluded studies can be found in Appendix 4. Data from studies were extracted and are summarised narratively below (See - Effects of the intervention)

#### Description of studies included (see appendix 3)

• Ren *et al.* 2022<sup>9</sup> conducted a meta-analysis to investigate the safety and efficacy of sofosbuvir-velpatasvir treatment for chronic hepatitis C virus infection, as well as to understand the effect of this combination with the addition of ribavirin. Inclusion criteria were: hepatitis C virus infected patient (all genotypes) with or without cirrhosis on sofosbuvir-velpatasvir or sofosbuvir-velpatasvir with ribavirin; and evaluating rates of SVR12 and risk of adverse effects. Only randomised trials were included. After a comprehensive literature search (PubMed, Cochrane, EMBASE and Web of Science, five studies where included, n=1277 (See table 1)

| Study                                        | Study type                                                      | Population                                                                                | Genotype | Treatment                                                                                       |
|----------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------|
| Takehara et.al.<br>2019 <sup>10</sup>        | Phase 2, open<br>label,<br>randomised<br>trial (n = 102)        | HCV and<br>compensated<br>cirrhosis                                                       | 3        | Sofosbuvir/velpatasvir for 12 weeks<br>OR<br>Sofosbuvir/velpatasvir plus ribavirin for 12 weeks |
| Esteban et.al.<br>2018 <sup>11</sup>         | Phase 3, open<br>label,<br>randomised<br>trial (n = 204)        | HCV with<br>decompensated<br>cirrhosis                                                    | Any      | Sofosbuvir/velpatasvir for 12 weeks<br>OR<br>Sofosbuvir/velpatasvir plus ribavirin for 12 weeks |
| Feld et.al. 2015<br>(ASTRAL 1) <sup>12</sup> | Phase 3,<br>double-blind,<br>placebo<br>controlled (n<br>= 624) | HCV including<br>those<br>compensated<br>cirrhosis (treated<br>and previously<br>treated) | 1 - 6    | Sofosbuvir/velpatasvir for 12 weeks<br>OR<br>Matching placebo for 12 weeks                      |

| <b>»</b> | Table 1: K | ey studies | included | in Ren | et al. | 2022: |
|----------|------------|------------|----------|--------|--------|-------|
|----------|------------|------------|----------|--------|--------|-------|

| Foster et.al.<br>2015 (ASTRAL<br>2,3) <sup>13</sup> | 2 x phase 3<br>RCT open-<br>label studies<br>(genotype 2,<br>n = 266;<br>genotype 3,<br>n = 552) | HCV not treated,<br>including patients<br>with compensated<br>cirrhosis          | 2, 3 | Trial 1 (genotype 2):<br>sofosbuvir/velpatasvir for 12 weeks<br>OR<br>Sofosbuvir/ribavirin for 12 weeks.<br><u>Trial 2 (genotype 3):</u><br>sofosbuvir/velpatasvir for 12 weeks<br>OR<br>Sofosbuvir/ribavirin for 24 weeks. |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Curry et.al.<br>2015 (ASTRAL<br>4) <sup>14</sup>    | Phase 3,<br>open-label<br>randomised<br>study (n =<br>267)                                       | Treated and<br>untreated patients<br>with HCV with<br>decompensated<br>cirrhosis | 1-6  | Sofosbuvir/velpatasvir for 12 weeks<br>OR<br>Sofosbuvir/velpatasvir plus ribavirin for 12 weeks<br>OR<br>Sofosbuvir/velpatasvir for 24 weeks                                                                                |

Table 2 outlines the details of an additional randomised trials identified in our search that was not included in Ren et al. 2022. ASTRAL 5 (part of the ASTRAL trial series) was not included in Ren et. al, however included the population of adults with HIV and HCV co-infection. This population is applicable to South Africa and thus this study was included.

| Study                                     | Study type                                         | Population                                            | Genotype        | Treatment                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------|----------------------------------------------------|-------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wyles et.al. <sup>15</sup><br>(ASTRAL 5)  | Phase 3, open<br>label study.                      | Adults chronically<br>infected with HIV-<br>1 and HCV | Any<br>genotype | Sofosbuvir/velpatasvir for 12 weeks                                                                                                                                                                                                                                                                                                       |
| Manns et. al.<br>2001 <sup>16</sup>       | Randomised<br>controlled<br>phase 3 study          | Patients with<br>chronic hepatitis C<br>(n = 1530)    | Any             | Interferon alfa-2b (3 MU subcutaneously three<br>times per week) plus ribavirin 1000-1200 mg/day<br>orally;<br>Or<br>Peginterferon alfa-2b 1.5 mcg/kg each week plus<br>800 mg/day ribavirin;<br>Or<br>Peginterferon alfa-2b 1.5 mcg/kg per week for 4<br>weeks then 0.5 mcg/kg per week plus ribavirin<br>1000-1200 mg/day for 48 weeks. |
| Fried MW<br>et.al. 2002 <sup>17</sup>     | Multinational<br>Randomised<br>controlled<br>trial | Patients with<br>chronic hepatitis C<br>(n = 1121)    | Any             | Peginterferon alfa-2a 180 mcg once weekly plus<br>daily ribavirin<br>Or<br>Peginterferon alfa-2a weekly plus daily placebo,<br>Or<br>Interferon alfa-2b 3MU thrice weekly plus daily<br>ribavirin for 48 weeks.                                                                                                                           |
| Hadzivannis et.<br>al. 2004 <sup>18</sup> | Randomised<br>controlled<br>phase 3 study          | Patients with<br>chronic hepatitis C<br>(n = 1311)    | Any             | Peginterferon-α2a, 180 mcg/week, for 24 or 48 weeks plus a low-dose ribavirin.                                                                                                                                                                                                                                                            |

| Table 2: Additional I | RCT  | not included in | Ren et.al. | 2022 |
|-----------------------|------|-----------------|------------|------|
|                       | i ci | not melaaca m   | nen et.ui. | 2022 |

## **Effects of Interventions**

#### Efficacy

## Sustained virological response of sofosbuvir-velpatasvir for 12-weeks

Ren et al. 2022 reported that sofosbuvir-velpatasvir achieved sustained virological response (SVR12) rates of 94.2% (95% CI 90.7–97.7%, P < .001) in 1277 patients<sup>9</sup>. The additional open-label trial (Wyles et al<sup>15</sup>) reported SVR12 results of 95% for the HIV/HCV co-infected population. Table 3 shows results for individual studies within Ren et al. as well as the additional trial included (Wyles et al) Figure 1 shows the forest plot from Ren et al. 2022.

| Included record             | Study                           | SVR12                           |
|-----------------------------|---------------------------------|---------------------------------|
| Ren et al. 2022             | Takehara et.al. 2019            | 92% (n = 47 of 51, 95% CI 81 to |
|                             |                                 | 98))                            |
|                             | Esteban et.al. 2018             | 91% (n = 92 of 101, 95% CI 84   |
|                             |                                 | to 96)                          |
|                             | Feld et.al. 2015 (ASTRAL 1)     | 99% (95% CI, 98 to >99)         |
|                             | Foster et.al. 2015 (ASTRAL 2,3) | <u>Trial 1 – genotype 2:</u>    |
|                             |                                 | 99% (95% CI 96 to 100)          |
|                             |                                 | <u>Trial 2 – genotype 3:</u>    |
|                             |                                 | 95% (95% CI 92 to 98)           |
|                             | Curry et.al. 2015 (ASTRAL 4)    | 83% (95% CI 74 to 90)           |
| Additional open-label trial | Wyles et.al. (ASTRAL 5)         | 95% (95% CI 89 to 99)           |

#### Table 3 - Summary of study findings for SVR12 rates



Figure 1 – forest plot from Ren et al. 2022 (Sustained virological response of sofosbuvir-velpatasvir for 12-weeks)<sup>9</sup>

## Comparison 1: Sofosbuvir-velpatasvir for 12-weeks vs sofosbuvir/velpatasvir PLUS ribavirin

Ren et al. 2022 reported that 3 RCTS (see Table 4) reported on sofosbuvir-velpatasvir PLUS ribavirin and found that SVR12 rates were similar to sofosbuvir-velpatasvir alone, except in genotype 3.

#### Table 4: Summary of study findings from Ren et al. 2022

| Study                        | SVR12                                |
|------------------------------|--------------------------------------|
| Takehara et.al. 2019         | 92% (n = 47 of 51, 95% Cl 81 to 98)  |
| Esteban et.al. 2018          | 96% (n = 99 of 103, 95% Cl 90 to 99) |
| Curry et.al. 2015 (ASTRAL 4) | 94% (95% CI 87 to 98)                |

The addition of ribavirin to sofosbuvir-velpatasvir did not significantly increase the SVR12 (RR = 1.03, 95%CI [0.95, 1.11]) in HCV genotype-1 patients and the SVR12 (RR = 1.09, 95%CI [0.86, 1.38]) in HCV genotype-2 patients. However, adding ribavirin significantly increased SVR12 (RR = 1.13, 95% CI [1.04, 1.23]) in genotype-3 patients. See Figure 2 below.

|                                     | SOF-VEL                  | +RBV       | SOF-V                    | EL     |            | Risk Ratio         | Risk Ratio         |
|-------------------------------------|--------------------------|------------|--------------------------|--------|------------|--------------------|--------------------|
| Study or Subgroup                   | Events                   | Total      | Events                   | Total  | Weight     | M-H. Fixed, 95% Cl | M-H, Fixed, 95% Cl |
| 1.1.1 G1                            |                          |            |                          |        |            |                    |                    |
| Curry 2015                          | 65                       | 68         | 60                       | 68     | 27.9%      | 1.08 [0.98, 1.20]  | -                  |
| Takehara 2018                       | 35                       | 39         | 39                       | 41     | 17.7%      | 0.94 [0.83, 1.07]  |                    |
| Subtotal (95% CI)                   |                          | 107        |                          | 109    | 45.6%      | 1.03 [0.95, 1.11]  | •                  |
| Total events                        | 100                      |            | 99                       |        |            |                    |                    |
| Heterogeneity: Chi <sup>2</sup> = 2 | 2.80, df = 1 (           | (P = 0.09  | 9); I <sup>2</sup> = 649 | %      |            |                    |                    |
| Test for overall effect: 2          | Z = 0.71 (P              | = 0.48)    |                          |        |            |                    |                    |
|                                     |                          |            |                          |        |            |                    |                    |
| 1.1.2 G2                            |                          |            |                          |        |            |                    |                    |
| Curry 2015                          | 4                        | 4          | 4                        | 4      | 2.1%       | 1.00 [0.66, 1.51]  |                    |
| Takehara 2018                       | 12                       | 12         | 8                        | 9      | 4.5%       | 1.13 [0.85, 1.50]  |                    |
| Subtotal (95% CI)                   |                          | 16         |                          | 13     | 6.6%       | 1.09 [0.86, 1.38]  |                    |
| Total events                        | 16                       |            | 12                       |        |            |                    |                    |
| Heterogeneity: Chi <sup>2</sup> = 0 | ).23, df = 1 (           | (P = 0.63) | 3); I <sup>2</sup> = 0%  | •      |            |                    |                    |
| Test for overall effect: 2          | Z = 0.72 (P              | = 0.47)    |                          |        |            |                    |                    |
| 440.00                              |                          |            |                          |        |            |                    |                    |
| 1.1.3 G3                            |                          |            | -                        |        | 0.404      |                    |                    |
| Curry 2015                          | 11                       | 13         |                          | 14     | 3.1%       | 1.69 [0.95, 3.00]  |                    |
| Esteban 2018                        | 99                       | 103        | 92                       | 101    | 43.2%      | 1.06 [0.98, 1.13]  |                    |
| Takehara 2018                       | 0                        | 0          | 0                        | 1      | 40.20/     | Not estimable      | <b>▲</b>           |
| Subtotal (95% CI)                   |                          | 110        |                          | 110    | 40.3%      | 1.10 [1.01, 1.19]  | •                  |
| Total events                        | 110                      |            | 99                       |        |            |                    |                    |
| Heterogeneity: Chir = 3             | 3.37, df = 1 (           | (P = 0.0)  | /); I* = 70*             | %      |            |                    |                    |
| lest for overall effect: A          | Z = 2.25 (P              | = 0.02)    |                          |        |            |                    |                    |
| 1.1.4 G4                            |                          |            |                          |        |            |                    |                    |
| Curry 2015                          | 2                        | 2          | 4                        | 4      | 1.6%       | 1 00 (0 56 1 79)   |                    |
| Subtotal (95% CI)                   | -                        | 2          | -                        | 4      | 1.6%       | 1.00 [0.56, 1.79]  |                    |
| Total events                        | 2                        | -          | 4                        |        |            |                    | Т                  |
| Heterogeneity: Not and              | licable                  |            |                          |        |            |                    |                    |
| Test for overall effect: 2          | Z = 0.00 (P)             | = 1.00)    |                          |        |            |                    |                    |
|                                     |                          | ,          |                          |        |            |                    |                    |
| Total (95% CI)                      |                          | 241        |                          | 242    | 100.0%     | 1.06 [1.01, 1.12]  | •                  |
| Total events                        | 228                      |            | 214                      |        |            |                    |                    |
| Heterogeneity: Chi <sup>2</sup> = 6 | 6.49, df = 6 (           | (P = 0.37  | 7); l² = 8%              |        |            | -                  |                    |
| Test for overall effect: 2          | Z = 2.23 (P              | = 0.03)    |                          |        |            |                    |                    |
| Test for subaroup diffe             | rences: Chi <sup>2</sup> | ² = 1.35.  | df = 3 (P                | = 0.72 | ). I² = 0% |                    | SOLAET SOLAETURE   |

Figure 2 – forest plot from Ren et al. 2022 (Sustained virological response of sofosbuvir-velpatasvir alone compared to sofosbuvir-velpatasvir plus ribavirin or 12-weeks)<sup>9</sup>

#### Comparison 2: Sofosbuvir-velpatasvir for 12-weeks vs Placebo

Only one study included in Ren et al 2022, evaluated sofosbuvir-velpatasvir versus placebo.<sup>12</sup> Feld et.al. found that sofosbuvir-velpatasvir showed high SVR12 [99% (95% CI 98 to >99)] compared to placebo where no patients had a sustained virological response.

#### Comparison 3: historical standard of care: Pegylated interferon plus ribavirin

Pegylated interferon plus ribavirin showed a sustained viral response rates of 54% to 63%

#### Table 5: Sustained virological response from RCTs: Mann, Fried, Hadziyannis

| Study                    | Sustained virological response of pegylated interferon plus ribavirin |
|--------------------------|-----------------------------------------------------------------------|
| Manns et. al. 2001       | 54% (274 of 511 participants)                                         |
| Fried MW et.al. 2002     | 56% (254 of 453 participants)                                         |
| Hadzivannis et. al. 2004 | 63% (Cl 59% to 68%)                                                   |

#### <u>Safety</u>

#### Serious adverse events

No difference in terms of severe adverse events was shown in Ren et al. 2022 between sofosbuvir-velpatasvir group and the sofosbuvir-velpatasvir PLUS ribavirin group (RR = 0.94, 95% CI: 0.55-1.59, P = 0.81, 483 patients).

#### Safety of sofosbuvir-velapatasvir

Common adverse events reported in Ren et al. 2022 were: anaemia, arthralgia, asthenia, back pain, cough, diarrhea, dyspnea, dyspepsia, fatigue, headache, insomnia, irritability, muscle spasm, myalgia, nasopharyntitis, nausea, prurutis, reduced haemoglobin/anaemia, reduced lymophocytes, and reduced neutrophils. The most frequently occurring events were headache, fatigue, nausea and nasopharyngitis. (See figure 3)



Figure 3: distribution of common adverse events of sofosbuvir-velpatasvir in HCV patients.<sup>9</sup>

#### **Quality of the Evidence**

#### <u>Ren et.al. 2022</u>

Risk of bias was independently assess by two authors. All studies included in the meta-analysis were assessed as low risk of bias in terms of random sequence generation, attrition and reporting biases. All five studies included in the Ren Systematic Review and Meta-analysis were assessed as high risk of bias for performance and detection bias (open-label studies), except Feld et.al. Funnel plot did not reveal significant evidence of publication bias.



Figure 4: risk of bias summary

## AMSTAR:

• Assessed as critically low quality review (areas contributing to assessment of critically low: no explanation on study selection, included/excluded studies not indicated, no funding sources listed, no explanation son statistical analysis, heterogeneity not clearly discussed, conflicts of interest not listed)

## **COSTING AND BUDGET IMPACT**

A cost-utility analysis comparing pegylated interferon alfa-2α plus ribavirin with sofosbuvir-velpatasvir with or without ribavirin found sofosbuvir-velpatasvir with or without ribavirin was more cost-effective and cost-saving compared to pegylated interferon alfa-2α plus ribavirin over a 20 year time horizon. The sofosbuvir-velpatasvir with or without ribavirin treatment strategy was dominant, with an ICER of R155 232 and a net monetary benefit of R77 534. A budget impact analysis suggests that full implementation of sofosbuvir-velpatasvir may reduce resource expenditure by 64%, with potential reductions in costs amounting to R63 200 336 over 30 years of management, assuming a 10% annual incremental uptake of sofosbuvir-velpatasvir with or without ribavirin.

See pharmacoeconomic analysis document "Cost-effectiveness of sofosbuvir-velpatasvir for chronic hepatitis C infection: a cost-utility analysis" for details.

## **CONCLUSION:**

Sofosbuvir-velpatasvir has been demonstrated to achieve a sustained virological response rate at 12 weeks (SVR12) of 94%, across genotypes. The addition of ribavirin does not show significant difference in SVR12, except in genotype 3. Adverse effects were shown to be comparable in the groups. The use of sofosbuvir-velpatasvir shows a far better SVR12 as compared to historic standard of care (pegylated interferon and ribavirin) and demonstrated to be cost-effective, even in healthcare settings with limited access to pegylated interferon plus ribavirin. Where genotyping is done, and genotype 3 is present, or in patients with decompensated cirrhosis, consideration can be made for the addition of ribavirin.

**Reviewers:** Jane Riddin with support of Tertiary Committee, Kim MacQuilkan and Rephaim Mpofu

#### **Declaration of interests:**

Jane Riddin (EDP, NDoH) has no interests to declare.

| Appendix 1: | <b>Evidence to</b> | decision | framework |
|-------------|--------------------|----------|-----------|
|-------------|--------------------|----------|-----------|

|                                   | JUDGEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EVIDENCE & ADDITIONAL CONSIDERATIONS                                                                                                                                                                                                                                                                |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QUALITY OF EVIDENCE<br>OF BENEFIT | What is the certainty/quality of evidence?         High       Moderate       Low       Very low         Image: Image is a straight of the evidence       Image is a straight of the evidence       Image is a straight of the evidence         Moderate quality: confident in the evidence       Image is a straight of the evidence       Image is a straight of the evidence         Moderate quality: mostly confident, but further research may change the effect       Image is a straight of the evidence       Image is a straight of the evidence         Low quality: some confidence, further research likely to change the effect       Image is a straight of the evidence       Image is a straight of the evidence         Very low quality: findings indicate uncertain effect       Image is a straight of the evidence       Image is a straight of the evidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Meta-analysis assessed as critically low, and studies<br>included have limitations such as open-label, small sizes.<br>However, there is a high certainty that another study would<br>not materially change the effect size, additionally the<br>findings across studies is shown to be consistent. |
| EVIDENCE OF<br>BENEFIT            | What is the size of the effect for beneficial outcomes?         Large       Moderate       Small       None         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Large effect size, estimated that 94% sustained virological<br>response at 12 weeks compared to 0% in placebo, and 54-<br>63% in pegylated interferon-ribavirin.                                                                                                                                    |
| QUALITY OF<br>EVIDENCE OF HARM    | What is the certainty/quality of evidence?         High       Moderate       Low       Very low         X       Image: Second Se |                                                                                                                                                                                                                                                                                                     |
| EVIDENCE<br>OF HARMS              | What is the size of the effect for harmful outcomes?         Large       Moderate       Small       None         X       X       X       X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |
| BENEFITS &<br>HARMS               | Do the desirable effects outweigh the undesirable<br>harms?FavoursFavoursInterventioninterventioncontrol=UncertainXIntervention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                     |
| FEASABILITY                       | Is implementation of this recommendation<br>feasible?<br>Yes No Uncertain<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                     |
| RESOURCE USE                      | How large are the resource requirements?<br>More Less intensive Uncertain<br>intensive<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Considered intervention would likely be cost saving due to improved efficacy and reduced cost.         Cost of medicines/ month:         Medicine       Cost (ZAR)*         Sofosbuvir-velpatasvir       R6661.54         (Epclusa®)       *state price offer                                       |

|                                                                                             | Is there importar  | nt uncertainty o | or variability about | The focus of the review was not on this aspect, however the  |  |  |
|---------------------------------------------------------------------------------------------|--------------------|------------------|----------------------|--------------------------------------------------------------|--|--|
| ES,                                                                                         | how much people    | e value the opti | ons?                 | availability of a DAA (sofosbuvir/velpatasvir) allows for    |  |  |
| N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N |                    |                  |                      | treatment options for this group of patients, which          |  |  |
| ERE                                                                                         | Minor              | Major            | Uncertain            | stakeholders would value.                                    |  |  |
| REF<br>TAI                                                                                  |                    |                  | X                    |                                                              |  |  |
| EP F                                                                                        |                    |                  |                      |                                                              |  |  |
| UES                                                                                         | Is the ontion acco | entable to key s | takeholders?         |                                                              |  |  |
| /AL                                                                                         | Yes                | No               | Uncertain            |                                                              |  |  |
| -                                                                                           | X                  |                  |                      |                                                              |  |  |
|                                                                                             | Would there be a   | in impact on he  | alth inequity?       | Would reduce health inequity. Having access to               |  |  |
| ≿                                                                                           | Yes                | No               | Uncertain            | sofosbuvir/velpatasvir would improve linkage and retention   |  |  |
| n n                                                                                         | X                  |                  |                      | in care and eventually may allow for decentralisation of     |  |  |
| Ĕ                                                                                           |                    |                  |                      | hepatitis C care from constrained, tertiary level of care to |  |  |
|                                                                                             |                    |                  |                      | more accessible secondary level of care.                     |  |  |

# Appendix 2: Search strategy

## PUBMED

|   |                 |                                                                                           | -       |
|---|-----------------|-------------------------------------------------------------------------------------------|---------|
| # | Query           | Search Details                                                                            | Results |
| 5 | #1AND #2 AND    | ((#1) AND (#2)) AND (#3) Filters: Meta-Analysis, Systematic Review                        | 19      |
|   | 3#              |                                                                                           |         |
| 4 | #1AND #2 AND    | ((#1) AND (#2)) AND (#3) Filters: Meta-Analysis, Randomized Controlled Trial,             | 38      |
|   | 3#              | Systematic Review                                                                         |         |
| 3 |                 | ("velpatasvir"[Title/Abstract]) AND (meta-analysis[Filter] OR                             | 43      |
|   |                 | randomizedcontrolledtrial[Filter] OR systematicreview[Filter])                            |         |
| 2 | Sofosbuvir      | ((sofosbuvir[Title/Abstract]) OR (sofosbuvir[MeSH Terms]) Filters: Meta-Analysis,         | 244     |
|   |                 | Randomized Controlled Trial, Systematic Review                                            |         |
|   |                 |                                                                                           |         |
| 1 | Viral hepatitis | ((((hepatitis[MeSH Terms])) OR (viral hepatitis[MeSH Terms])) OR                          | 8672    |
|   |                 | (hepatitis[Title/Abstract])) OR (viral hepatitis[Title/Abstract]) Filters: Meta-Analysis, |         |
|   |                 | Randomized Controlled Trial, Systematic Review                                            |         |

| search | Query                                                        | Results |
|--------|--------------------------------------------------------------|---------|
| #1     | MeSH descriptor: [Hepatitis, Viral, Human] explode all trees | 7138    |
| #2     | MeSH descriptor: [Sofosbuvir] explode all trees              | 313     |
| #3     | MeSH descriptor: [velpatasvir] explode all trees             | 0       |
| #4     | #1 AND #2                                                    | 216     |
| #5     | #4 AND velpatasvir                                           | 44      |

## RCTS

| # | Query    | Search Details                                                                                 | Results |
|---|----------|------------------------------------------------------------------------------------------------|---------|
| 4 | #1AND #2 | ((#1) AND (#2)) AND (#3) Filters: Randomized Controlled Trial                                  | 19      |
|   | AND 3#   |                                                                                                |         |
| 3 |          | ("velpatasvir"[Title/Abstract] AND ("randomized controlled trial"[Publication Type] OR         | 23      |
|   |          | "randomized controlled trials as topic"[MeSH Terms] OR "randomized controlled trial"[All       |         |
|   |          | Fields] OR "randomised controlled trial"[All Fields])) AND (randomizedcontrolledtrial[Filter]) |         |

| 2 | Sofosbuvir | ("sofosbuvir"[Title/Abstract] OR "sofosbuvir"[MeSH Terms]) AND (randomizedcontrolledtrial[Filter]) | 155  |
|---|------------|----------------------------------------------------------------------------------------------------|------|
| 1 | Viral      | ("hepatitis"[MeSH Terms] OR "hepatitis a"[MeSH Terms] OR (("virally"[All Fields] OR                | 5560 |
|   | hepatitis  | "virals"[All Fields] OR "virology"[MeSH Terms] OR "virology"[All Fields] OR "viral"[All Fields])   |      |
|   |            | AND ("hepatitis"[MeSH Terms] OR "hepatitis a"[MeSH Terms])) OR "hepatitis"[Title/Abstract]         |      |
|   |            | OR "viral hepatitis"[Title/Abstract]) AND (randomizedcontrolledtrial[Filter])                      |      |

#### **COCHRANE LIBRARY**

#### No Cochrane reviews

#### Additional search for effect size of historic standard of care: pegylated interferon plus ribavirin:

Search: (pegylated interferon plus ribavirin[MeSH Terms]) AND (hepatitis C[MeSH Terms]) Filters: Randomized Controlled Trial Sort by: Publication Date

((("pegylate"[All Fields] OR "pegylated"[All Fields] OR "pegylates"[All Fields] OR "pegylating"[All Fields] OR "pegylation"[All Fields] OR "pegylations"[All Fields]) AND ("interferon s"[All Fields] OR "interferone"[All Fields] OR "interferones"[All Fields] OR "interferones"[MeSH Terms]) AND "plus"[All Fields]) AND "ribavirin"[MeSH Terms] AND ("hepatitis c"[MeSH Terms] OR "hepacivirus"[MeSH Terms])) AND (randomizedcontrolledtrial[Filter])

- » 186 results were identified
- » Majority did not meet the PICO: wrong comparator, wrong population, wrong outcome, wrong combination.
- » 3 RCTs meeting patient population were included

# Appendix 3: Characteristics of included studies Table 1

| Citation                        | Study design                                                                                                                          | Population (n)                                    | Treatment                                           | Main findings                                                                                                                                                                                                                                                                                                                                                                                              | Risk of bias                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ren et.al.<br>2022 <sup>9</sup> | Meta-analysis<br>(studies<br>included:<br>• Curry et.al.<br>• Foster et.al.<br>• Feld et.al.<br>• Esteban et.al.<br>• Takehara et.al. | Patients with<br>chronic hepatitis C<br>infection | Sofosbuvir/velpatasvir with<br>or without ribavirin | SVR12 rates of 94.2% (95% CI 90.7 to 97.7%, p<br><0.001) in patient on sofosbuvir/velpatasvir.<br>Addition of ribavirin did not significantly<br>increase SVR12 in genotypes 1 and 2, RR = 1.03<br>(95% CI 0.95 to 1.11) and RR = 1.09 (95% 0.86<br>to 1.38) respectively. Addition of ribavirin in<br>patients with genotype 3 showed significant<br>increased SVR12, RR = 1.13 (95% CI 1.04 to<br>1.23). | All studies were assessed as low risk of bias in terms<br>of random sequence generation, attrition and<br>reporting biases. All five studies included in the Ren<br>Systematic Review and Meta-analysis were assessed<br>as high risk of bias for performance and detection bias<br>(open-label studies), except Feld et.al. Funnel plot did<br>not reveal significant evidence of publication bias.<br>AMSTAR: assessed as critically low quality |

| Citation                | Study design                                | Population (n)                                                  | Genotypes | Treatment                                                                                             | Main findings                                                                                                                         | Quality/Risk of bias/limitation                                                                                                                                                                                    |
|-------------------------|---------------------------------------------|-----------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Esteban<br>et.al. 2018  | Phase 2, open<br>label,<br>randomised trial | Patients with HCV<br>and compensated<br>cirrhosis (n=204)       | 3         | Sofosbuvir/velpatasvir for 12<br>weeks<br>OR<br>Sofosbuvir/velpatasvir plus<br>ribavirin for 12 weeks | SVR12 91% (92 of 101, 95% Cl 84 to 96) for<br>sof/velpat and 96% (99 of 103, 95% 90 to 99)<br>for sofos/velpat plus rivabvirin group. | <ul> <li>» No formal statistical<br/>comparison.</li> <li>» Limited patient numbers.</li> <li>» Single country study- may not<br/>have external validity.</li> </ul>                                               |
| Takehara<br>et.al. 2019 | Phase 3, open<br>label,<br>randomised trial | Patients with HCV<br>with<br>decompensated<br>cirrhosis (n=102) | Any       | Sofosbuvir/velpatasvir for 12<br>weeks<br>OR<br>Sofosbuvir/velpatasvir plus<br>ribavirin for 12 weeks | SVR12 rates were 92% (41 of 51) in each<br>group. Ribavirin did not improve efficacy (but<br>increase toxicity)                       | <ul> <li>» Limited patient numbers</li> <li>» Lack of genotype diversity.</li> <li>» Only few patients with severe cirrhosis included.</li> <li>» Single country study- may not have external validity.</li> </ul> |

| Citation                                 | Study design                                     | Population (n)                                                                                                                                                                              | Genotypes     | Treatment                                                                                                                                                                                                                                                                 | Main findings                                                                                                                                                                                                                                                                                                                         | Quality/Risk of bias/limitation                                                                                                       |
|------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Feld et.al.<br>2015<br>(ASTRAL 1)        | Phase 3, double-<br>blind, placebo<br>controlled | Patients with<br>chronic HCV<br>genotypes including<br>those with<br>compensated<br>cirrhosis (treated<br>and previously<br>treated)<br>(n=624)                                             | 1, 2, 4, 5, 6 | Sofosbuvir/velpatasvir<br>OR<br>Matching placebo<br>For 12 weeks                                                                                                                                                                                                          | SVR12 was 99% (95% CI, 98 to >99) in<br>patients taking sofosbuvir/velpatasvir.<br>(none of 116 patients on placebo had a<br>sustained virological response)<br>Serious adverse effects in 2% of<br>sofosbuvir/velpatasvir group                                                                                                      |                                                                                                                                       |
| Foster et.al.<br>2015<br>(ASTRAL<br>2,3) | 2 x phase 3 RCT<br>open-label<br>studies         | Patients previously<br>treated for HCV<br>genotype 2/3 and<br>those not treated,<br>including patients<br>with compensated<br>cirrhosis<br>(genotype 2, n =<br>266; genotype 3, n =<br>552) | 2, 3          | Trial 1: patients with genotype<br>2 (n = 266)<br>sofosbuvir/velpatasvir<br>Or<br>Sofosbuvir/ribavirin<br>For 12 weeks.<br><u>Trial 2: patients with genotype</u><br>3 (n = 552)<br>sofosbuvir/velpatasvir for 12<br>weeks<br>Or<br>Sofosbuvir/ribavirin for 24<br>weeks. | Trial 1 – genotype 2:<br>SVR12 was 99% (95% CI 96 to 100) in<br>sofosbuvir/velpatasvir group, and 94% (95%<br>CI 88 to 97) in sofosbuvir/ribavirin, p = 0.02.<br><u>Trial 2 – genotype 3:</u><br>SVR12 was 95% (95% CI 92 to 98) in<br>sofosbuvir/velpatasvir group, and 80% (95%<br>CI 88 to 97) in sofosbuvir/ribavirin, p < 0.001. | Open-label studies                                                                                                                    |
| Curry et.al.<br>2015<br>(ASTRAL 4)       | Phase 3, open-<br>label<br>randomised<br>study   | Treated and<br>untreated patients<br>with HCV genotypes<br>1-6 with                                                                                                                         | 1-6           | Sofosbuvir/velpatasvir for 12<br>weeks<br>OR                                                                                                                                                                                                                              | SVR12 sofosbuvir/velpatasvir for 12 weeks:<br>83% (95% CI 74 to 90)<br>SVR12 sofosbuvir/velpatasvir plus ribavirin<br>for 12 weeks: 94% (95% CI 87 to 98)                                                                                                                                                                             | Not powered to detect significant<br>differences between 3 groups.<br>Only patients with moderate<br>hepatic decompensation included. |

| Citation                        | Study design                                 | Population (n)                                                                                                              | Genotypes | Treatment                                                                                             | Main findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Quality/Risk of bias/limitation                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 |                                              | decompensated<br>cirrhosis<br>(n = 267)                                                                                     |           | Sofosbuvir/velpatasvir plus<br>ribavirin for 12 weeks<br>OR<br>Sofosbuvir/velpatasvir for 24<br>weeks | SVR12 sofosbuvir/velpatasvir for 24 weeks:<br>86% (95% Cl 77 to 92)<br>No significant differences between groups on<br>post hoc analysis                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Wyles D<br>et.al.<br>(ASTRAL 5) | Phase 3, open-<br>label, single arm<br>study | Patients with HCV<br>(any genotype) and<br>HIV-1 coinfection,<br>including those with<br>compensated<br>cirrhosis (n = 106) | 1-4       | Sofosbuvir/velpatasvir daily<br>for 12 weeks                                                          | <ul> <li>SVR12 achieved in 95% of patients (101 of 106), 95% Cl, 89%–99%</li> <li>Genotype 1: SVR12 achieved in 95% patients (74 of 78), 95% Cl, 87%–99%</li> <li>Genotype 2: SVR12 achieved in 100% (all 11) 95% Cl, 72%–100%</li> <li>Genotype 3: SVR12 achieved in 92% (11 of 12) 95% Cl, 62%–100%</li> <li>Genotype 4: SVR12 achieved in 100% (all 5) 95% Cl, 48%–100%</li> <li>All 19 patients with cirrhosis had SVR12.\The most common adverse events were fatigue (25%), headache (13%), upper respiratory tract infection (8%), and arthralgia (8%)</li> </ul> | <ul> <li>Numbers of hard to treat<br/>patients (i.e. cirrhosis etc.)<br/>was small and insufficient to<br/>confirm efficacy/safety in co-<br/>infected (HIV/HCV) patients –<br/>however not expected that<br/>HIV-1 adversely impacts<br/>response of<br/>Sofosbuvir/velpatasvir.</li> <li>Generalisability limited due to<br/>small sample size.</li> <li>No patients with genotypes 5<br/>and 6 included.</li> </ul> |

| Citation                    | Study design                                    | Population (n)                                     | Genotypes | Treatment                                                                                                                                                                                                                                                                                                                                    | Main findings                                                                                                                                                                                                                                                                                                                                                                                                    | Quality/Risk of bias/limitation                                                                                                    |
|-----------------------------|-------------------------------------------------|----------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Manns et.<br>al. 2001       | Randomised<br>controlled phase<br>3 study       | Patients with<br>chronic hepatitis C<br>(n = 1530) | Any       | Interferon alfa-2b (3 MU<br>subcutaneously three times per week)<br>plus ribavirin 1000-1200 mg/day orally;<br>Or<br>Peginterferon alfa-2b 1.5 mcg/kg each<br>week plus 800 mg/day ribavirin;<br>Or<br>Peginterferon alfa-2b 1.5 mcg/kg per<br>week for 4 weeks then 0.5 mcg/kg per<br>week plus ribavirin 1000-1200 mg/day<br>for 48 weeks. | SVR rate was significantly higher in the<br>higher-dose peginterferon group<br>(274/511 [54%],)) than in the lower-<br>dose peginterferon (244/514 [47%]) or<br>interferon (235/505 [47%]) groups. p =<br>0.01 for both comparisons.                                                                                                                                                                             | •                                                                                                                                  |
| Fried MW<br>et.al. 2002     | Multinational<br>Randomised<br>controlled trial | Patients with<br>chronic hepatitis C<br>(n = 1121) | Any       | Peginterferon alfa-2a 180 mcg once<br>weekly plus daily ribavirin<br>Or<br>Peginterferon alfa-2a weekly plus daily<br>placebo,<br>Or<br>Interferon alfa-2b 3MU thrice weekly<br>plus daily ribavirin for 48 weeks.                                                                                                                           | A higher proportion of patients who<br>received peginterferon alfa-2a plus<br>ribavirin had a sustained virologic<br>response (defined as the absence of<br>detectable HCV RNA 24 weeks after<br>cessation of therapy) than of patients<br>who received interferon alfa-2b plus<br>ribavirin (56 percent vs. 44 percent, p <<br>0.001) or peginterferon alfa-2a alone<br>(56 percent vs. 29 percent, p < 0.001). | <ul> <li>Study was designed by<br/>sponsor together with<br/>hepatologists</li> <li>Data analysis included<br/>sponsors</li> </ul> |
| Hadzivannis<br>et. al. 2004 | Randomised<br>controlled phase<br>3 study       | Patients with<br>chronic hepatitis C<br>(n = 1311) | Any       | Peginterferon-α2a, 180 mcg/week, for<br>24 or 48 weeks plus a low-dose<br>ribavirin.                                                                                                                                                                                                                                                         | Sustained virologic response rates for<br>peginterferon-α2a and standard-dose<br>ribavirin for 48 weeks were 63% (Cl,<br>59% to 68%) overall and 52% (Cl, 46% to<br>58%) in patients with HCV genotype 1                                                                                                                                                                                                         | •                                                                                                                                  |

# Appendix 4: Excluded studies

| Citation                                                                                                                                  | Article Type        | Reason for exclusion   |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------|
| Safety and efficacy of sofosbuvir plus velpatasvir with or without ribavirin for chronic hepatitis C virus infection: A systematic review | Systematic review   | A later updated SR and |
| and meta-analysis.                                                                                                                        | and meta-analysis   | MA included            |
| Ahmed H, Abushouk AI, Attia A, Gadelkarim M, Gabr M, Negida A, Abdel-Daim MM.J Infect Public Health. 2018 Mar-Apr;11(2):156-164.          |                     |                        |
| doi: 10.1016/j.jiph.2017.09.004. Epub 2017 Sep 29.PMID: 28970099                                                                          |                     |                        |
| Effectiveness and Safety of Sofosbuvir/Velpatasvir/Voxilaprevir as a Hepatitis C Virus Infection Salvage Therapy in the Real World: A     | Systematic review   | Does not meet PICO     |
| Systematic Review and Meta-analysis.                                                                                                      | and meta-analysis   |                        |
| Xie J, Xu B, Wei L, Huang C, Liu W.Infect Dis Ther. 2022 Aug;11(4):1661-1682. doi: 10.1007/s40121-022-00666-0. Epub 2022 Jun              |                     |                        |
| 24.PMID: 35749010                                                                                                                         |                     |                        |
| Safety of interferon-free therapies for chronic hepatitis C: a network meta-analysis.                                                     | Network meta-       | Does not meet PICO     |
| Ferreira VL, Assis Jarek NA, Tonin FS, Borba HH, Wiens A, Pontarolo R.J Clin Pharm Ther. 2016 Oct;41(5):478-85. doi:                      | analysis            |                        |
| 10.1111/jcpt.12426. Epub 2016 Jul 21.PMID: 27440554                                                                                       |                     |                        |
| Sofosbuvir plus velpatasvir combination for the treatment of chronic hepatitis C in patients with end stage renal disease on renal        | Systematic review   | Does not meet PICO     |
| replacement therapy: A systematic review and meta-analysis.                                                                               | and meta-analysis   |                        |
| De A, Roy A, Verma N, Mishra S, Premkumar M, Taneja S, Singh V, Duseja A.Nephrology (Carlton). 2022 Jan;27(1):82-89. doi:                 |                     |                        |
| 10.1111/nep.13968. Epub 2021 Sep 14.PMID: 34453374                                                                                        |                     |                        |
| Identification of the Best Direct-Acting Antiviral Regimen for Patients With Hepatitis C Virus Genotype 3 Infection: A Systematic Review  | Systematic review   | Does not meet PICO     |
| and Network Meta-analysis.                                                                                                                | and network meta-   |                        |
| Berden FA, Aaldering BR, Groenewoud H, IntHout J, Kievit W, Drenth JP.Clin Gastroenterol Hepatol. 2017 Mar;15(3):349-359. doi:            | analysis            |                        |
| 10.1016/j.cgh.2016.10.034. Epub 2016 Nov 10.PMID: 27840182                                                                                |                     |                        |
| Interferon-free therapies for patients with chronic hepatitis C genotype 3 infection: A systematic review.                                | Systematic review   | Does not meet PICO     |
| Gimeno-Ballester V, Buti M, San Miguel R, Riveiro M, Esteban R.J Viral Hepat. 2017 Nov;24(11):904-916. doi: 10.1111/jvh.12660. Epub       |                     |                        |
| 2017 Jan 23.PMID: 27925386                                                                                                                |                     |                        |
| Transplant of Kidneys From Hepatitis C Virus-Positive Donors To Hepatitis C Virus-Negative Recipients: A Retrospective Study and          | Retrospective study | Does not meet          |
| Systematic Review.                                                                                                                        | and systematic      | PICO/and study design  |
| Shadekejiang H, Zhu J, Wu X.Exp Clin Transplant. 2022 Dec;20(12):1076-1084. doi: 10.6002/ect.2022.0315.PMID: 36718006                     | review              |                        |
| Effectiveness of current and future regimens for treating genotype 3 hepatitis C virus infection: a large-scale systematic review.        | Systematic review   | Does not meet PICO     |
| Fathi H, Clark A, Hill NR, Dusheiko G.BMC Infect Dis. 2017 Nov 16;17(1):722. doi: 10.1186/s12879-017-2820-z.PMID: 29145802                |                     |                        |
| Systematic review: current concepts and challenges for the direct-acting antiviral era in hepatitis C cirrhosis.                          | Systematic Review   | Does not meet PICO     |
| Majumdar A, Kitson MT, Roberts SK. Aliment Pharmacol Ther. 2016 Jun; 43(12): 1276-92. doi: 10.1111/apt.13633. Epub 2016 Apr               |                     |                        |
| 18.PMID: 27087015                                                                                                                         |                     |                        |

| Efficacy and safety of sofosbuvir-containing regimens in chronic hepatitis C patients with genotype 2 and 3: a comprehensive analysis  | Systematic Review | Does not meet PICO |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| of 18 randomized controlled trials.                                                                                                    |                   |                    |
| Fan H, Huang P, Tian T, Wu J, Xia X, Feng Y, Wang J, Yu R, Zhang Y, Yue M.J Gastrointestin Liver Dis. 2018 Jun;27(2):159-168. doi:     |                   |                    |
| 10.15403/jgld.2014.1121.272.sof.PMID: 29922761                                                                                         |                   |                    |
| Cost-Effectiveness of Elbasvir/Grazoprevir for the Treatment of Chronic Hepatitis C: A Systematic Review.                              | Systematic review | Does not meet PICO |
| Liu J, Guo M, Ke L, You R.Front Public Health. 2022 May 13;10:836986. doi: 10.3389/fpubh.2022.836986. eCollection                      |                   |                    |
| 2022.PMID: 35646774                                                                                                                    |                   |                    |
| Real-World Effectiveness of Direct-Acting Antiviral Regimens against Hepatitis C Virus (HCV) Genotype 3 Infection: A Systematic Review | Systematic review | Does not meet PICO |
| and Meta-Analysis.                                                                                                                     | and meta-analysis |                    |
| Zhuang L, Li J, Zhang Y, Ji S, Li Y, Zhao Y, Li B, Li W, Quan M, Duan Y, Zhao H, Cheng D, Wang X, Ou W, Xing H.Ann Hepatol. 2021 Jul-  |                   |                    |
| Aug;23:100268. doi: 10.1016/j.aohep.2020.09.012. Epub 2020 Oct 12.PMID: 33059055                                                       |                   |                    |
| Efficacy and Safety of Sofosbuvir-based Regimens in Hepatitis C Patients With Decompensated Cirrhosis: A Systematic Review and         | Systematic review | Does not meet PICO |
| Meta-analysis.                                                                                                                         | and meta-analysis |                    |
| Zhang W, Zhang J, Tang S, Liu Y, Du X, Qiu L, Liu M, Yu H, Pan CQ.J Clin Transl Hepatol. 2023 Feb 28;11(1):144-155. doi:               | ,                 |                    |
| 10.14218/JCTH.2022.00006. Epub 2022 Jun 28.PMID: 36406321                                                                              |                   |                    |
| French Patients with Hepatitis C Treated with Direct-Acting Antiviral Combinations: The Effect on Patient-Reported Outcomes.           | Systematic Review | Does not meet PICO |
| Cacoub P, Bourliere M, Asselah T, De Ledinghen V, Mathurin P, Hézode C, Henry L, Stepanova M, Younossi ZM.Value Health. 2018           |                   |                    |
| Oct;21(10):1218-1225. doi: 10.1016/j.jval.2018.01.006. Epub 2018 Feb 21.PMID: 30314623                                                 |                   |                    |
|                                                                                                                                        |                   |                    |
| Systematic review: epidemiology and response to direct-acting antiviral therapy in genotype 6 chronic hepatitis C virus infection.     | Systematic review | Does not meet PICO |
| Mettikanont P, Bunchorntavakul C, Reddy KR.Aliment Pharmacol Ther. 2019 Mar;49(5):492-505. doi: 10.1111/apt.15100. Epub 2019           |                   |                    |
| Jan 27.PMID: 30687952                                                                                                                  |                   |                    |
| The impact of sofosbuvir/velpatasvir/voxilaprevir treatment on serum hyperglycemia in hepatitis C virus infections: a systematic       | Systematic review | Does not meet PICO |
| review and meta-analysis.                                                                                                              | and meta-analysis |                    |
| Hung HY, Lai HH, Lin HC, Chen CY.Ann Med. 2023 Dec;55(1):463-479. doi: 10.1080/07853890.2023.2168745.PMID: 36655629                    |                   |                    |
| Comparative effectiveness of pan-genotypic therapies for the treatment of patients with hepatitis C virus infection in Bulgaria.       |                   | Does not meet PICO |
| Djambazov S, Slavchev G, Encheva M, Mitova R, Vekov T.J Comp Eff Res. 2019 May;8(7):455-459. doi: 10.2217/cer-2018-0143. Epub          |                   |                    |
| 2019 Mar 28.PMID: 30920311                                                                                                             |                   |                    |
| Drug-Drug Interactions between Direct Oral Anticoagulants and Hepatitis C Direct-Acting Antiviral Agents: Looking for                  | Systematic review | Does not meet PICO |
| Evidence Through a Systematic Review.                                                                                                  |                   |                    |
| Bellesini M, Bianchin M, Corradi C, Donadini MP, Raschi E, Squizzato A.Clin Drug Investig. 2020 Nov;40(11):1001-1008. doi:             |                   |                    |
| 10.1007/s40261-020-00962-v.PMID: 32809123                                                                                              |                   |                    |

#### REFERENCES

<sup>1</sup> Sonderup MW, Horak J, Smuts H, Saayman J, Boretti L, Black J. Expanding the epidemiological understanding of hepatitis C in South Africa: Perspectives from a patient cohort in a rural town. SAMJ: South African Medical Journal. 2021;111:783-8.

<sup>2</sup> Sonderup MW, Afihene M, Ally R, Apica B, Awuku Y, Cunha L, et al. Hepatitis C in sub-Saharan Africa: the current status and recommendations for achieving elimination by 2030. The Lancet Gastroenterology & Hepatology. 2017;2(12):910-9.

<sup>3</sup>Feuerstadt P, Bunin AL, Garcia H, Karlitz JJ, Massoumi H, Thosani AJ, Pellecchia A, Wolkoff AW, Gaglio PJ, Reinus JF. Effectiveness of Hepatitis C Treatment with Pegylated Interferon and Ribavirin in urban minority patients. Hepatology. April 2010; 51: 1137 – 1143.

<sup>4</sup> Greig SL. Sofosbuvir/Velpatasvir: A Review in Chronic Hepatitis C. Drugs. 2016;76(16):1567-78.

<sup>5</sup> World Health Organization. World Health Organization Model List of Essential Medicines – 22nd List, 2021. Geneva: (WHO/MHP/HPS/EML/2021.02). 2021.

<sup>6</sup> Young K, Liu B, Bhuket T, Gish RG, Wong RJ. Improved liver transplant waitlist mortality and lower risk of disease progression among chronic hepatitis C patients awaiting liver transplantation after the introduction of direct-acting antiviral therapies in the United States. J Viral Hepat. 2019;26(3):350-61.

<sup>7</sup> Goñi Esarte S, Juanbeltz R, Martínez-Baz I, Castilla J, San Miguel R, Herrero JI, et al. Long-term changes on health-related quality of life in patients with chronic hepatitis C after viral clearance with direct-acting antiviral agents. Rev Esp Enferm Dig. 2019;111(6):445-52.

<sup>8</sup> National Department of Health. National Guidelines for the management of viral hepatitis. 2020. https://knowledgehub.health.gov.za/system/files/elibdownloads/2023-

04/SA%2520NDOH\_Viral%2520Hepatitis%2520guidelines%2520final.pdf

<sup>9</sup> Ren XD, Ru X, He YQ, Li CY, Guo M, Qiao M. Safety and Efficacy of Sofosbuvir-velpatasvir. A Meta-Analysis. Medicine. 2022, 101:42(e31183)

<sup>10</sup> Takehara T, Sakamoto N, Nishiguchi S, Ideka F, Tatsumi T, Ueno Y, et.al. Efficacy and safety of sofosbuvirvelpatasvir with or without ribavirin in HCV-infected Japanese patients with decompensated cirrhosis: an openlabel phase 3 trial. Journal of Gastroenterology. 2019, 54: 87-95.

<sup>11</sup> Esteban R, Pineda JA, Calleja JL, Casado M, Rodriguez M, Turnes J, et. al. Efficacy of sofosbuvir and velpatasvir, with or without ribavirin in patients with hepatits C virus genotype 3 infection and cirrhosis. Gatroenterology, 2018, 155: 1120-1127.

<sup>12</sup> Feld JJ, Jacobson IM, Hezode C, Asselah T, Ruane PJ, Gruener N,et.al. Sofosbuvir and velpatasvir for HCV genotype 1, 2, 4, 5 and 6 infection. NEJM, 2015, 373 (27): 2599-2607.

<sup>13</sup> Foster GR, Afdhal N, Roberts SK, Brau N, Gane EJ, Pianko S, et.al. Sofosbuvir and velpatasvir for HCV genotype 2 and 3 infection. NEJM. 2015, 373:2608-2617.

<sup>14</sup> Curry MP, O'Leary JG, Bzowej N, Muir AJ, Korenblat KM, Fenkel JM, et.al. Sofosbuvir and velpatasvir for HCV in patients with decompensated cirrhosis.

NEJM. 2015, 373:2618-2628.

<sup>15</sup> Wyles D, Brau N, Kottilil S, Daar ES, Ruane P, Workowski K, et.al. Sofosbuvir and velpatasvir for the treatment of hepatitis C in patients coinfected with human immunodeficiency virus type 1: An open-label, phase 3 study. Clinical Infectious Diseases. 2017, 65(1): 6-12.

<sup>16</sup> Manns MP, McHutchisonJG, Gordon SC, Rustgi VK, Shiffman M, Reindollar R, Goodman ZD, Kourv K, Ling M, Albrecht. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment for chronic hepatitis C: a randomised trial. Lancet. 2001, 358 (9286): 958-965.

<sup>17</sup> Fried MW, Shiffman ML, Reddy KR, Smith C, Marinos G, Gonçales FL, et. al. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. NEJM. 2002, 347 (13): 975 – 982.

<sup>18</sup> Hadziyannis SJ, Sette H, Morgan TR, Balan V, et.al. Peginterferon- $\alpha$ 2a and Ribavirin Combination Therapy in Chronic Hepatitis C. Annals of Internal Medicine. 2004, 140 (5): 346-355.